Leveraging Features and Networks for Probabilistic Tensor Decomposition
نویسندگان
چکیده
We present a probabilistic model for tensor decomposition where one or more tensor modes may have sideinformation about the mode entities in form of their features and/or their adjacency network. We consider a Bayesian approach based on the Canonical PARAFAC (CP) decomposition and enrich this single-layer decomposition approach with a two-layer decomposition. The second layer fits a factor model for each layer-one factor matrix and models the factor matrix via the mode entities’ features and/or the network between the mode entities. The second-layer decomposition of each factor matrix also learns a binary latent representation for the entities of that mode, which can be useful in its own right. Our model can handle both continuous as well as binary tensor observations. Another appealing aspect of our model is the simplicity of the model inference, with easy-to-sample Gibbs updates. We demonstrate the results of our model on several benchmarks datasets, consisting of both real and binary tensors.
منابع مشابه
A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures
Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...
متن کاملAn Approximate Tensor-Based Inference Method Applied to the Game of Minesweeper
We propose an approximate probabilistic inference method based on the CP-tensor decomposition and apply it to the well known computer game of Minesweeper. In the method we view conditional probability tables of the exactly -out-of-k functions as tensors and approximate them by a sum of rank-one tensors. The number of the summands is min{l + 1, k − l + 1}, which is lower than their exact symmetr...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملBaTFLED: Bayesian Tensor Factorization Linked to External Data
The vast majority of current machine learning algorithms are designed to predict single responses or a vector of responses, yet many types of response are more naturally organized as matrices or higher-order tensor objects where characteristics are shared across modes. We present a new machine learning algorithm BaTFLED (Bayesian Tensor Factorization Linked to External Data) that predicts value...
متن کامل